Published Articles
Benoist, T., Bruneau, L., Jakšić, V., Panati, A., & Pillet, C.-A. (2024). A note on two-times measurement entropy production and modular theory. Letters in Mathematical Physics, 114(1), 32. https://link.springer.com/article/10.1007/s11005-024-01777-0
Botteron, P., Broadbent, A., & Proulx, M.-O. (2024). Extending the known region of nonlocal boxes that collapse communication complexity. Physical Review Letters, 132(7), 070201. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.070201
Fukuda, M., & Nechita, I. (2024). Generating series and matrix models for meandric systems with one shallow side. Annales de l’Institut Henri Poincaré D, 11(2), 299–330. https://ems.press/journals/aihpd/articles/14199190
Benoist, T., Fatras, J.-L., & Pellegrini, C. (2023). Limit theorems for quantum trajectories. Stochastic Processes and Their Applications, 164, 288–310. https://doi.org/10.1016/j.spa.2023.07.014
Bernardin, C., Chetrite, R., Chhaibi, R., Najnudel, J., & Pellegrini, C. (2023). Spiking and collapsing in large noise limits of SDEs. The Annals of Applied Probability, 33(1), 417–446. https://doi.org/10.1214/22-AAP1819
Bluhm, A., Nechita, I., & Schmidt, S. (2023). Polytope compatibility—from quantum measurements to magic squares. Journal of Mathematical Physics, 64(12). https://doi.org/10.1063/5.0165424
Müller-Hermes, A., Nechita, I., & Reeb, D. (2023). A refinement of reznick’s positivstellensatz with applications to quantum information theory. Quantum, 7, 1001. https://quantum-journal.org/papers/q-2023-05-12-1001/
Nechita, I., Schmidt, S., & Weber, M. (2023). Sinkhorn algorithm for quantum permutation groups. Experimental Mathematics, 32(1), 156–168. https://www.tandfonline.com/doi/abs/10.1080/10586458.2021.1926005
Attal, S., Deschamps, J., & Pellegrini, C. (2022). Classical noises emerging from quantum environments. In Séminaire de probabilités LI (pp. 341–380). Springer. https://link.springer.com/chapter/10.1007/978-3-030-96409-2_11
Benoist, T., Hänggli, L., & Rouzé, C. (2022). Deviation bounds and concentration inequalities for quantum noises. Quantum, 6, 772. https://quantum-journal.org/papers/q-2022-08-04-772/
Bluhm, A., Jenčová, A., & Nechita, I. (2022). Incompatibility in general probabilistic theories, generalized spectrahedra, and tensor norms. Communications in Mathematical Physics, 393(3), 1125–1198. https://link.springer.com/article/10.1007/s00220-022-04379-w
Bluhm, A., & Nechita, I. (2022). A tensor norm approach to quantum compatibility. Journal of Mathematical Physics, 63(6). https://doi.org/10.1063/5.0089770
Bluhm, A., & Nechita, I. (2022). Maximal violation of steering inequalities and the matrix cube. Quantum, 6, 656. https://quantum-journal.org/papers/q-2022-02-21-656/
Bompais, M., Amini, N. H., & Pellegrini, C. (2022). Parameter estimation for quantum trajectories: Convergence result. 2022 IEEE 61st Conference on Decision and Control (CDC), 5161–5166. https://ieeexplore.ieee.org/abstract/document/9992617/
Dartois, S., Nechita, I., & Tanasa, A. (2022). Entanglement criteria for the bosonic and fermionic induced ensembles. Quantum Information Processing, 21(11), 376. https://link.springer.com/article/10.1007/s11128-022-03690-8
Heinosaari, T., Jivulescu, M. A., & Nechita, I. (2022). Order preserving maps on quantum measurements. Quantum, 6, 853. https://quantum-journal.org/papers/q-2022-11-10-853/
Jivulescu, M. A., Lancien, C., & Nechita, I. (2022). Multipartite entanglement detection via projective tensor norms. Annales Henri Poincaré, 23, 3791–3838. https://link.springer.com/article/10.1007/s00023-022-01187-9
Loulidi, F., & Nechita, I. (2022). Measurement incompatibility versus bell nonlocality: An approach via tensor norms. PRX Quantum, 3, 040325. https://doi.org/10.1103/PRXQuantum.3.040325
Singh, S., & Nechita, I. (2022). Diagonal unitary and orthogonal symmetries in quantum theory: II. Evolution operators. Journal of Physics A: Mathematical and Theoretical, 55(25), 255302.
Singh, S., & Nechita, I. (2022). The PPT 2 conjecture holds for all choi-type maps. Annales Henri Poincaré, 23, 3311–3329. https://link.springer.com/article/10.1007/s00023-022-01166-0
Zhang, Q.-H., & Nechita, I. (2022). A fisher information-based incompatibility criterion for quantum channels. Entropy, 24(6), 805. https://www.mdpi.com/1099-4300/24/6/805
Amini, N. H., Bompais, M., & Pellegrini, C. (2021). On asymptotic stability of quantum trajectories and their cesaro mean. Journal of Physics A: Mathematical and Theoretical, 54(38), 385304.
Ballesteros, M., Benoist, T., Fraas, M., & Fröhlich, J. (2021). The appearance of particle tracks in detectors. Communications in Mathematical Physics, 385, 429–463. https://link.springer.com/article/10.1007/s00220-021-03935-0
Benoist, T., Bernardin, C., Chetrite, R., Chhaibi, R., Najnudel, J., & Pellegrini, C. (2021). Emergence of jumps in quantum trajectories via homogenization. Communications in Mathematical Physics, 387(3), 1821–1867. https://link.springer.com/article/10.1007/s00220-021-04179-8
Benoist, T., Cuneo, N., Jakšić, V., & Pillet, C.-A. (2021). On entropy production of repeated quantum measurements II. examples. Journal of Statistical Physics, 182, 1–71. https://link.springer.com/article/10.1007/s10955-021-02725-1
Benoist, T., Fraas, M., Pautrat, Y., & Pellegrini, C. (2021). Invariant measure for stochastic schrödinger equations. Annales Henri Poincaré, 22, 347–374. https://link.springer.com/article/10.1007/s00023-020-01001-4
Kukulski, R., Nechita, I., Pawela, Ł., Puchała, Z., & Życzkowski, K. (2021). Generating random quantum channels. Journal of Mathematical Physics, 62(6). https://doi.org/10.1063/5.0038838
Loulidi, F., & Nechita, I. (2021). The compatibility dimension of quantum measurements. Journal of Mathematical Physics, 62(4). https://doi.org/10.1063/5.0028658
Nechita, I., Pellegrini, C., & Rochette, D. (2021). A geometrical description of the universal 1→ 2 asymmetric quantum cloning region. Quantum Information Processing, 20(10), 333. https://link.springer.com/article/10.1007/s11128-021-03258-y
Nechita, I., & Singh, S. (2021). A graphical calculus for integration over random diagonal unitary matrices. Linear Algebra and Its Applications, 613, 46–86. https://www.sciencedirect.com/science/article/pii/S0024379520305681
Singh, S., & Nechita, I. (2021). Diagonal unitary and orthogonal symmetries in quantum theory. Quantum, 5, 519. https://doi.org/10.22331/q-2021-08-09-519
Nechita, I., & Pillet, J. (2020). SudoQ–a quantum variant of the popular game. arXiv Preprint arXiv:2005.10862. https://hal.science/hal-02988621/